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H=-control theory, which is lately being actively developed [1, 2], enables one to synthesize robust 
regulators for systems with uncertainty [3, 4]. The equations of such systems contain unknown parameters 
or functions which are, in particular, parametric perturbations. 

One of the unsolved problems in H=-control theory is to find the lowest possible (over all permissible 
controls) level of damping of oscillations which is understood as the maximum (with respect to all external 
perturbations) of the ratio of the norm of the output of the system to the norm of the external 
perturbation. Mathematically, this problem is associated with the existence of a special solution of a 
parametric Riccati matrix equation which contains a number of parameters, one of which corresponds 
to the level of damping of oscillations in the system. Up to the present time, constructive conditions 
for the existence of such a solution have been lacking and the only possibility was to check using the 
MATLAB software package whether the required solution for a given level of damping of oscillations 
exists. 

Estimates of the limits of the minimum possible level of damping of oscillations of a parametrically 
perturbed pendulum, obtained by solving a problem on the limiting possibilities of a control [6], are 
presented below. A robust H=-control of a pendulum is constructed which ensures a level of damping 
of oscillations which is close to the minimum possible value. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Consider a controlled pendulum with parametric and external perturbations 

2 
2 " + 2 + O ) o [ l + f ~ ( t , x ,  Yc)]x = u + v ,  x ( 0 )  = .~(0) = 0 (1.1) 

where m0, f(m0 ~ 0, 0 ~< f < 1) are specified parameters, ~t is a control and v = v(t) is an external 
perturbation. The dissipation factor is chosen to be equal to unity, which is ensured by a corresponding 
change of the independent variable t. The function ~(t, x, 2) defines the parametric perturbation and 
satisfies the condition 

[f2(t, x, 2)1 -< 1, Vt, x, A (1.2) 

We will denote the class of such functions by Z. With respect to the external perturbation a)(t), we shall 
assume that v c L2(0, ~),  i.e. 

J l ( v )  = I v 2 ( t ) d t  < oo 

o 
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The class of permissible controls is determined by linear feedbacks of the type 

u = - ~ x - [ ~  (1.3) 

We will denote the class of such control laws by = 
In order to describe the purpose of the control, we introduce a functional which characterizes the 

quality of a transient 

J2(u, v) = I(toZx 2 + ~2 + p2u2)d t 

0 

where p is a specified parameter. The integrand of this functional corresponds to the mechanical energy 
of the unperturbed pendulum, taking account of that spent on the control. 

The problem of damping the oscillations of a pendulum consists of determining a control from the 
class E which ensures that the inequality 

Jz(u ,  l ) ) /J l (1))<~[,  V1) E L 2, I) ~- O, Vf~(t ,x,£)e Z (1.4) 

is satisfied with the minimum possible value of the parameter ~, > 0. 
For a given permissible control law, we define the level of damping of oscillations in the system as 

follows 

F(u)  = sup sup [J2(u, v ) / J t ( v ) ]  
~ Z o ~ O  

In the set of permissible controls of the level of damping of oscillations in the system when there are 
external and parametric perturbations, we define the minimum possible control as 

Yo = inf r (u)  (1.5) 
uE~. 

such that problem (1.4) is solvable for all ~ > % and does not have a solution for all ~ ~< 7o. In control 
theory, this problem is known as a H=-control problem. 

In order to solve it, we reduce Eq. (1.1) to the form 

in which 

X = 

R = A f ( t , x ) X + B l 1 ) + B 2 u  

plxdj A: tx, II o 1 ,  ,211orl 
x 2 -too2[1 + J~(t ,  x)] -1 1 

(1.6) 

2. SYNTHESIS  OF A P E N D U L U M  C O N T R O L  WHEN T H E R E  ARE 
NO P A R A M E T R I C  P E R T U R B A T I O N S  

We will initially consider a pendulum without parametric perturbation, that is, whenf  = 0. In this case, 
system (1.6) takes the form 

where 

= A o X + B l 1 ) + B 2 u  

J101ff Ao = 2 
- to  o - 1  

In accordance with relation (1.3), the permissible control laws have the form 

u = - O x ,  O =  (cz[3) 

(2.1) 

(2.2) 
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As the controlling output, we introduce the vector -011 
z = C x + D u ,  C = 0 1 , 

0 0  

D = (2.3) 

and consider the problem of the H=-control of system (2.1), which consists of constructing a control 
law which, for a given value of 7 > 0 accompanying the zero initial conditions x(0) = 0 from any 
perturbation from the class L2(0, oo), ensures that the following equality is satisfied: 

IIzl_.~<g, V v ~ L  2, r e 0  (2.4) 
Ilvll 

and, when there are no perturbation, the asymptotic stability of the closed system. Here, for any vector 
function h(t) e L2, 

Uhl[ 2 = p h ( t ) 1 2 d t  

0 

and ]h I is the Euclidean norm. Hence, the problem of the damping of the oscillations of a pendulum 
is equivalent to the H=-control problem of system (2.1). 

We will also present another treatment of this problem. 
We introduce the notation 

su [[z{I, inf I{z{[ 

For any permissible control, we set up, corresponding to system (2.1), (2.3), and operator H which 
maps a perturbation v(t) from L2 into an output z(t) from L2. Problem (2.4) can then be formulated 
in the form 

Ilnll < T, Ilnlf = So 

where [IHII is the norm of this operator. 
Under the assumption that the closed system (2.1), (2.2) is asymptotically stable, we introduce the 

Laplace transforms V(p) and Z(p) for ag(t) and z(t) respectively. Then 

Z ( p )  = H ( p ) V ( p )  

where the transfer matrix 

H ( p )  = 
_ 2 1  ] °~° -P(~ + I3P) 

2 p 
p + ( l + ~ ) p + ( ~ o + m  

Using the Parseval equality, it can be shown that 

[Inll = IlHll~ = s u p J H r ( - i c o ) H ( i c o )  
co 

where the quantity 11 HI] ~ is the H~-norm of the system being considered. Hence, in terms of the H~- 
theory of the level of damping of oscillations, F(u) is identical to the H~-norm of the closed system in 
the case of this control law and the minimum possible level of damping of oscillations 70 is identical to 
the minimum H~-norm over all permissible control laws. 

The solution of problem (2.4) follows from general H~-control theory [1]: one of the possible (the 
so-called central) H~-control law has the form 

-2 r (2.5) u = - p  B 2 P x  
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where P I> 0 is the stabilizing solution of the Riccati matrix equation 

- 2  n n T  - 2 _  ~ T  A ~ P + P A  o + P B P + C T C  = 0, B = 7 B1/~I -P  /~zt~2 (2.6) 

that is, the solution for which the matrixA0 + BP is a Hurwitz matrix. The Riccati equation is solved 
numerically using the MATLAB software package. Here, it can turn out that the required solution does 
not exist for the chosen value of the parameter y, and the problem arises of determining the possible 
values of ~/. 

3. E S T I M A T I O N  OF T H E  M I N I M U M  L E V E L  OF D A M P I N G  OF 
O S C I L L A T I O N S  G E N E R A T E D  BY E X T E R N A L  P E R T U R B A T I O N S  

We will consider the problem of finding the minimum possible level of damping of oscillations ~0 of a 
pendulum defined by expression (1.5) when there are no parametric perturbations. In this case, % is 
defined as follows: 

q(0 = inf  S o (3 .1 )  

A direct calculation of this quantity is not possible. We will therefore attempt to obtain a lower estimate 
for it. 

An approach, based on the analysis of the limiting possibilities for controlling a linear system [6], is 
proposed for constructing this estimate. The essence of this approach consists of treating an auxiliary 
maximin problem. We will use a relation; well known from game theory which relates a maximin and 
a minimax: 

inf S o > sup I,  
u E E  o ~ 0  

If the quantity 

~t. = sup I, (3.2) 
o ~ 0  

could now be found, it would be a lower estimate of the required quantity ~/0. In this sense, problem 
(3.2) can be regarded as a problem concerning the limiting possibilities of the control of system (2.1) 
when there are acting external perturbations from the class L2. 

It should be noted that problem (3.2) is, to a certain extent, simpler than the initial problem (3.1). 
In any case, for each specified perturbation ~)(t), the problem of minimizing the quadratic functional 
can be effectively solved [7]. On the other hand, the result of the minimization, in the set of all permissible 
controls, of the ratio of the norm of the output of the system to the norm of the external perturbation 
cannot be written in the form of a simple expression containing v(t) which is available for the subsequent 
analysis. We will therefore attempt to give an estimate of the form 

~'. = sup I u > ~t + 
o ~ 0  

We will first consider the problem of constructing a lower estimate of the minimum value of II z II 
with respect to u ~ E for each specified a~(t). In order to do this, we specify a certain perturbation v(t) 
from the class L2, choose an arbitrary control u(x) = -®x, which ensures the asymptotic stability of 
system (2.1), and obtain a lower estimate of [I z[I. Suppose x(t) is the solution of the Cauchy problem 
for system (2.1) with zero initial conditions, a specified perturbation and a chosen control u(x). We use 
the notation a(t) = u(x(t)) and obtain 

x(t) = A0x(t ) + B ll)(t) + B2ft(t ) (3.3) 

We now change to Fourier transforms in the last equality, by multiplying (3.3) by the factor e -i~t and 
integrating the resulting equation with respect to t within the limits from -~o to ~o. In Fourier transform~ 
we obtain 

i o X  = A o X + B 1 V + B 2 U  

X = 5x(t)e-i°tdt ,  V = fv(t)e-i°~tdt, U = f f i ( t )e- i° tdt  (3.4) 

Integration with respect to t (and, subsequently, with respect to co) is carried out from - ~  to ~ .  



Oscillations of a pendulum with uncertain external and parametric perturbations 273 

We express the vector X from Eq. (3.4) as 

X = RB1V+RB2U,  R = ( i o l - A o )  -1 (3.5) 

and, using the Parseval equality, we write the expression for the square of the norm of the output of 
the system 

IIzJJ 2 = l f ( x * c r c x  + p2U*u)ato (3.6) 

where an asterisk denote Hermitian conjugation. Substituting the first expression of (3.5) the integrand 
on the right-hand side of equality (3.6), we obtain 

]lzll 2 = ~--~[K(IUI z -  U*U o - U~U) + B~LB, IVIZ]dO 

K = B2LB2+p 2, L = R * c T c R ,  U o = - K - I B ; L B 1 V  

(3.7) 

We next consider the following auxiliary problem: it is required to find the function U, which minimizes 
the integrand in (3.7), for any specified function V (and, consequently, for any specified function x)(t)). 

Its solution is formulated as follows: the minimum value of the integrand with respect to U in relation 
(3.7) is reached when 

U = U o = -K-1BTLB1V (3.8) 

The proof of this assertion can be found in [6]. 
With U0 from relation (3.8), the integrand in (3.7) is reduced to the form G(m)[ V[ 2, where 

O(co) = BT(L - LB2K-IBTL)BI (3.9) 

We also note that, since the integrand in (3.6) is non-negative, then G(o))/> 0. 
So, for any specified perturbation v(t) and for any fixed control from the class E, we have the estimate 

,,112_>  j'c(oo)l v?ao, 

I u >_ IG(co)]VlZdoo/f]Vl2do3 

This means that 

Next, no calculating sup over v ~ L2, we obtain 

sup/u> I I o~o sup[  G(o)IVIZd¢o/ IvlZd¢o] = maxO(oo) 

Henceforth, unless otherwise stated, max is calculated with m ~ ( -~,  oo). 
Finally, the required estimate of the limiting possibilities of the control acquires the form 

7o -> 7 ,  > max, f  G-(o) = y+ (3.10) 

For system (2.1) and (2.3), the function G(m) is defined by the relation 

G ( o )  = 
p2(O 2 + COo 2) 

o [(co 0 2 )  2 + + co 2 + COo 

Maximization of this function with respect to m gives the following estimate for the minimum possible 
level of damping of the oscillation of a pendulum when there are no parametric perturbations: 

, / 2  2^2 
7+ = P/4P C°oV + 1 
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where 

0 2 = 
1, co o < 4r3/3 

2 2 O 3 o 2 ( 2 ¢ 0 o - ~ ) ~  1, C0o > ,,/-J/3 

For example, when 9 = 1 and COo = 10, a permissible control does not exist for which the level of 
damping of the oscillations of the pendulum is less the % = 0.817. On solving the Riccati equation (2.6) 
numerically with 7 = 0.819, we find that the control law (2.5), which ensures a given level of damping 
of oscillations, has the form 

u I = - 0.50x 1 - 1.79x 2 (3.11) 

This mean that the minimum possible level of damping of the oscillations of the pendulum lies within 
the limits 0.817 ~< 7o <~ 0.819. 

4. S Y N T H E S I S  OF A P E N D U L U M  C O N T R O L  IN T H E  CASE OF 
P A R A M E T R I C  P E R T U R B A T I O N S  

We will consider the problem of the damping of the oscillations of a pendulum in the case of parametric 
perturbations ( f ,  0) and external perturbations. From the point of view of Hoo-theory, problem (1.4) 
is the problem of a robust H=-control that consists of constructing a control law which, for a specified 
value of 7 > 0 with null initial conditions x(0) = 0 and for any perturbation x)(t) from the class 
L2(0, oo) and any permissible parametric perturbation ~(t, x) from the class Z, ensures that the inequality 

[IZ[~[ < 7, VI) e L 2, 1) ~ 0, V ~ ( t ,  x) e Z (4.1) 
IlvU 

is satisfied and, in the absence of external perturbations, ensures the asymptotic stability of the closed 
system. 

In order to solve this problem, we consider the auxiliary system 

Yl = Aox + B~ I) + F~ + B2u , z = Cx + Du (4.2) 

where F = col(0, f ) ,  ~ is an additional variable and all the remaining variables and parameters are the 
same as in the initial system (1.6). When ~ =- f~( t ,  x)Ex, where E = (o20, 0), Eqs (4.2) and (1.6) are 
identical and, in this case, it follows from condition (1.2) that 

l~(t) l -<ly(t) l ,  V t ~ 0 ,  y = Ex (4.3) 

We rewrite the first of Eqs (4.2) and introduce the new control output (~) 

:i = AoX + (B1, 7 g - l F ) w  + B2u , ~. = col(z ,  gy )  (4.4) 

Here w = col(w1, w2), wl = v, w2 = 7-1g~ and g * 0 is a certain parameter. The control law which ensures 
for system (4.4) that the target inequality 

II~ll < 711wll, Vw ~ g2, w ~ 0 (4.5) 

is satisfied for a certain value of g will ensure that inequality (4.1) is satisfied for system (1.6) for the 
same value of the parameter 7. In fact, from inequality (4.5), we obtain 

Ilzll 2 < 72[1~1[ 2 + g2([1~112 -Ilyll 2) 

and this means that inequality (4.1) will hold for system (1.6) for which the condition [[ ~[[ 2 _ i ly[i 2 ~ 0, 
which follows from condition (4.3), is satisfied. On the other hand, satisfying the target inequality (4.1) 
for system (1.6) with a certain control law still does not mean, generally speaking, that, in the case of 
the same control law and the same value of 7, a value of g exists such that this control law ensures the 
attainment of the target (4.5) for system (4.4). 
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Hence, the central H=-law of control for the auxiliary, completely defined system (4.4) can be taken 
as a robust H=-control of a pendulum when there are parametric perturbations. This control law can 
have the form (2.5), where P/> 0 is the stabilizing solution of the Riccati matrix equation 

AoP + PA o + P(B + ~t-2FFT)p + cT c + p.2ETE = 0 (4.6) 

This parametric equation is also solved numerically using the MATLAB software package. It may turn 
out here that the required solution does not exist for the chosen values of the Parameters g and 7- The 
question of separating a domain in the (g, 7) plane in which Eq. (4.6) is solvable will be considered in 
the following section using the approach described in Section 3. 

5. B O U N D A R I E S  O F  T H E  M I N I M U M  L E V E L  O F  D A M P I N G  O F  
T H E  O S C I L L A T I O N S  O F  A P E N D U L U M  IN T H E  C A S E  O F  

P A R A M E T R I C  P E R T U R B A T I O N S  

We recall that the minimum possible level of damping of oscillations of a pendulum in the case of 
parametric perturbations is defined as follows: 

Yo = inf r(u)  = inf sup S v (5.1) 
uE £ u ~ g ~  Z 

so that inequality (4.1) is solvable for all 7 > 7o and has no solution for all 7 ~< Y0. It is natural to call 
the quantity T0 the minimum robust H=-norm. We will now find boundaries of the interval within which 
Y0 necessarily lies. 

We will takes as the lower boundary 71 of the quantity Y0, the minimum robust H=-norm of system 
(1.6) for a narrower class of parametric perturbations and, in fact, for the steady-state parametric 
perturbations f~(t, x) - f20 which satisfy (1.2). The quantity 71 can be directly obtained by maximizing 
with respect to £2o the estimate (3.10) derived above 

yo_>Tl = max max G ~ ~ , f a o )  (5.2) 
f~o co~ (-~,~) 

The function G(m, f20) is calculated for each specified f~0 in accordance with formula (3.9) and the 
quantity {0~ in the matrixA0 is replaced by {02(1 + f~0). As a result, we obtain 

p2({02 + {002) 
6({0, f~0) = (5.3) 

92( [{0Z _ {002(1 + fl,aO)] 2 + {02} + {0Z + {002 

In order to construct the upper limit of the quantity 7o, we make use of the auxiliary system (4.4). 
We introduce the notation 

~w = Ilill inf I[~ll 
~U.polFfqi, L = ~ 4wll 

For system (4.4), we define the minimum H=-norm, which depends on the parameters 7 and g: 

Vo(7, B) = infSw (5.4) 
u E ~  

It follows directly from inequality (4.5) that 

Vo(7, ~) -- 7 (5.5) 

We will consider the following equation in Y 

v0(Y, g) = y 

We will assume that, when y > 0, g > 0, this equation implicitly defines a function 7 = 7,(g) such that, 
for a specified g, inequality (4.5) is satisfied when 7 > 7,(g) and is not satisfied when y ~< y,(g) (as will 
be evident from what follows, this situation holds in the case of a pendulum). Since the H=-control for 
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the auxiliary system in the case of a given g is the robust H~-control for the initial system with a 
parametric perturbation with the same value of Y, the inequality 

7o-<7, (g)  

holds for the minimum robust H=-norm. 
Then, 

7. = i n f y , ( g )  (5.6) 
g#0 

can serve as the upper limit 7u of the quantity 70. 
Hence, the minimum robust H=-norm lies within the following limits 

71 g 70 -< 7. (5.7) 

The quantity 71 is defined by expression (5.2). 
The following computational procedure is required to construct the boundary 3',. It consists of finding 

the pair of values (g > 0, Y > 0) for which a stabilizing solution P of the two-parameter Riccati equation 
(4.6) exists. The value of Y found can be taken as the upper limit 7u. It may turn out to be a rough estimate, 
and it is therefore desirable to find a smaller value of Y if possible. 

We will next show how it is possible to narrow down the domain in which the required parameters 
are searched for in the set g > 0, Y > 0. Here, the basic idea consists of the "rejection" of a certain 
region of the first quadrant in which a stabilizing solution of the Riccati equation (4.6) clearly does not 
exist. 

For this purpose, we will first apply to system (4.4) the approach described above when obtaining 
the estimate (3.10). Actually, in the case of fixed Y and g for this system, we obtain 

where 

(fW*Gu(O,))WdoJ~ 112 
v0(Y, g) >-_ supT, ___ sup / - 2 | m V+(7, ~) 

w.~0 w,~o k jlwI a0~ ) 

G.(o)  = B1 

7g q F r 

T Ku = B2LuB 2 + p 2 , 

II L B -1 r [Lu-  u 2Ku BzLu](BI, Yg -~F) 

L u = R*(CrC+ g2ETE)R, R = ( i m l - A o )  q 

v+( 7, g) = max~/r(G,(co)) 

W is the Fourier transform of the function w(t) and r(-) is the spectral radius of the corresponding matrix. 
In the case being considered, we have 

G,,(co) = ~ ( o )  I g-1,ff 
~-l,~e ~-272f2 

and the spectral radius of this matrix is equal to 

r(Gu(o)) = (1 +l.t-zyzf2)~(0;~) 

where 

• (o) = 
p2[f.02 + f.O~(1 + ~20)~)] 

2 2 p2[(c02_002) 2+02]+ 2+c0~(1 +~  00) 

We now consider the following equation in Y 

v+(7, ~t) = 7 (5.8) 
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the solution of which we denote by %(g). Then, the Riccati equation (4.6) clearly does not have the 
required solution in the domain ,/~< %(g). 

We note that 

max r ( ,~ , (co) )  = (1 + g-zTzfz)I/2W(g), W(g) = max,,/~--(co) 

and the solution of Eq. (5.8) can be explicitly expressed in the form 

~t 2 - f 2 W 2 ( g  ) 

In the narrowed-down region 7 > 7+(g), we then choose g with a certain step size and, for each such 
g, we find numerically (using the MATLAB software package, for example) the minimum possible value 
of 7 for which the Riccati-equation (4.6) has a stabilizing solution. The minimum value from the values 
of 7 which have been obtained is then chosen and this value is also taken as the upper estimate for 7,- 

We emphasize once again that the lower and upper estimates in inequality (5.7) are found using the 
numerical procedures which have been presented, and that methods which exist at the present time do 
not enable one, in general, to find the exact value of 7o and the robust control corresponding to it. In 
this connection, a design procedure for constructing a robust H=-control can be presented as follows. 
As was shown above, a H~-control with a specified level 7 of damping of perturbations for the auxiliary 
system (4.4) is a robust H=-control for the initial uncertain system (1.5) with the same 7. Consequently, 
the control law 

-2 T u = - 9  BzPx (5.9) 

can be chosen as the required robust H=-control, where P />  0 is the stabilizing solution of Eq. (4.6) 
in the case of a ~t from the domain of definition of the function ?.(gt) and when 7 > %(g). It should 
also be noted that the level of damping of the perturbations in the uncertain system (1.5) cannot be 
made smaller than the lower estimate Yt which has been obtained for any permissible control law. 

We will present these boundaries in the case of a pendulum with co o = lO, f = 0.05, p = 1. The lower 
boundary'fl is determined numerically according to (5.2) and (5.3) : 7z ~ 0.820. Numerical analysis shows 
that the minimum value of the function %(g) is reached when g = 0.141 and is equal to 0.942. We take 
7u ~ 0.943. Hence 

0.820 < 70 < 0.943 

Solving the Riccati equation (4.6) numerically with g = 0.141 and ? = 0.943, we find the robust control 
(5.9) in the form 

u z = - 1.503x I - 3.955x z (5.10) 

6. S I M U L A T I O N  

By means of simulation, we compare the damping of the oscillations of a parametrically perturbed 
pendulum in the case of two strategies: the control law (3.11), constructed for a parametrically 
unperturbed pendulum, and the robust control law (5.10). The simulation was carried out for the 
following external and parametric perturbations: 

= ~sinl0t ,  0 < t < 2 0  f~(t,x) = sin20t 
v(t) [0,  t > 2 0  

(the frequencies of the perturbations are Close to resonance frequencies). As a result, in the case of 
control law (3.11) the ratio of the norm of the output to the norm of the external perturbation was 
found to be equal to 1.150, and in the case of the control law (5.10) was found to be equal to 0.903. 
This means that, the case of the given control laws, the levels of damping of oscillations satisfy the 
inequalities F(Ul) /> 1.150 and F(u2) ~> 0.903. On the other hand, according to the procedure for 
constructing a robust H=-control, we have F(u2) ~< 0.903. Consequently, the control law u 2 ensures a 
level of damping of the oscillations F(u2) within the limits of 0.903 to 0.943 in the case of parametric 



278 D.V. Balandin et al. 

and external perturbations. For comparison, we point out that, when there is no control, (u = u0 = 0) 
F(u0) t> 1.753, which exceeds the minimum possible level of damping of oscillations by a factor of at 
least 1.86. Note that, in the case of the control laws, u0 and ul, the upper boundaries in the parametrically 
perturbed systems cannot be indicated in principle. 
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